Transport properties of alkali-metal-doped single-wall carbon nanotubes

نویسنده

  • L. Grigorian
چکیده

We report in situ measurements of four-probe dc resistance ~R! and thermopower ~S! of Csand K-doped single-wall carbon nanotube ~SWNT! mats as a function of a doping and temperature ~T!. With increasing dopant exposure, the mat resistance has been found to first decrease and then increase, exhibiting a minimum for optimal Cs doping. In contrast, for K doping, the mat resistance decreased monotonically and saturated. This unexpected result suggests that the diameter of the alkali-metal ion plays a role in the transport properties of the tube bundles. A doping-induced decrease in R by factors of ;120 and ;40 were observed for Csand K-doped SWNT mats, respectively. The low-temperature upturn of R(T) observed in all pristine SWNT samples was progressively suppressed with increased K doping. The optimally Cs-doped sample exhibited a positive dR/dT over the entire range of measurement ~80 K,T,300 K!. In contrast to the anomalously large positive S300 K;140– 150 mV/K observed in pristine SWNT at room temperature, the Cs-doped samples exhibited a small negative S;27 mV/K as expected for an ordinary metal. @S0163-1829~98!52032-2#

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

First principle study of structural and electronic transport properties for electrically doped zigzag single wall GaAs nanotubes

Emerging trend in semiconductor nanotechnology motivates to design various crystalline nanotubes. The structural and electronic transport properties of single walled zigzag Gallium Arsenide nanotubes have been investigated using Density Functional Theory (DFT) and Non-Equilibrium Green’s Function (NEGF) based First Principle formalisms. Structural stability and enhanced electronic transmission ...

متن کامل

First principle study of structural and electronic transport properties for electrically doped zigzag single wall GaAs nanotubes

Emerging trend in semiconductor nanotechnology motivates to design various crystalline nanotubes. The structural and electronic transport properties of single walled zigzag Gallium Arsenide nanotubes have been investigated using Density Functional Theory (DFT) and Non-Equilibrium Green’s Function (NEGF) based First Principle formalisms. Structural stability and enhanced electronic transmission ...

متن کامل

A Theoretical Study of H2S and CO2 Interaction with the Single-Walled Nitrogen Doped Carbon Nanotubes

The physical adsorption of hydrogen sulfide and carbon dioxide gases on the zigzag (5,0) carbon nanotubes doped with nitrogen was investigated through the application of B3LYP/6-31G* at the level of theory on Gaussian 03 software. A variety of stable and high abundance structures of nitrogen doped carbon nanotubes were considered in order to study the interaction between the mentioned gases in ...

متن کامل

A Theoretical Study of H2S and CO2 Interaction with the Single-Walled Nitrogen Doped Carbon Nanotubes

The physical adsorption of hydrogen sulfide and carbon dioxide gases on the zigzag (5,0) carbon nanotubes doped with nitrogen was investigated through the application of B3LYP/6-31G* at the level of theory on Gaussian 03 software. A variety of stable and high abundance structures of nitrogen doped carbon nanotubes were considered in order to study the interaction between the mentioned gases in ...

متن کامل

Electronic and structural properties of alkali doped SWNT

Comprehensive experiments on structural and transport properties of alkali intercalated single walled carbon nanotubes (SWNT) are presented. The increasing electron density was measured as a shift of the Drude-edge in optical reflectivity in-situ with progressive doping. In saturation-doped samples the Drude-edge shifts into the visible (to 25,000 30,000 cm— 1 for potassium and rubidium doped s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998